Nucleophilic Addition to Iron Tricarbonyl Complexes of α , β -Unsaturated Ketones

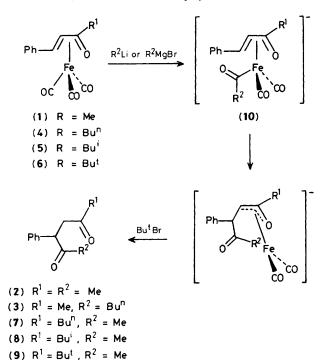
Susan E. Thomas

Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.

Reaction of Grignard and organolithium reagents with iron tricarbonyl complexes of α , β -unsaturated ketones leads to 1,4-diketones in a reaction controlled by the transition metal centre.

Although iron tricarbonyl complexes of α , β -unsaturated ketones were first synthesised more than twenty years ago,¹ the reactivity of the α , β -unsaturated ketone fragment of these compounds has received little attention. Electrophilic addition to the complexes has been reported^{2,3} but the reaction of iron tricarbonyl complexes of α , β -unsaturated ketones with nucleophiles has not been investigated. This communication describes the reaction of iron tricarbonyl complexes of α , β -unsaturated ketones with reaction of iron tricarbonyl complexes of α , β -unsaturated ketones with reaction of iron tricarbonyl complexes of α , β -unsaturated ketones with Grignard and organolithium reagents resulting in the formation of 1,4-diketones.

Tricarbonyl(benzylideneacetone)iron (1) is readily prepared from benzylideneacetone and enneacarbonyldi-iron.² Complex (1) was treated with methylmagnesium bromide at -78 °C and then quenched with t-butyl bromide as a proton source. Removal of iron residues by filtration through alumina and column chromatography led to the isolation of the 1,4-diketone (2) (Table 1, entry 1). Similarly, treatment of (1) with methyl-lithium and butyl-lithium resulted in the formation of 1,4-diketones (2) and (3) respectively (Table 1, entries 2 and 3).


The reaction is unaffected by varying the carbonyl substituent \mathbb{R}^1 . The novel complexes (4), (5), and (6) were prepared from enneacarbonyldi-iron and the corresponding α,β -unsatu-

rated ketones. Treatment of enneacarbonyldi-iron with α , β -unsaturated ketones carrying substituents at the α -carbon atom did not lead to the isolation of stable complexes.

Table 1. Addition of Grignard and organolithium reagents to iron tricarbonyl complexes of α,β -unsaturated ketones.^a

Entry	Complex	R ² Li or R ² MgBr	Product ^b (% yield) ^c
1	(1)	MeMgBr	(2) (79)
2	(1)	MeLi	(2)(75)
3	(1)	BunLi	(3) (53)
4	(4)	MeLi	(7) (73)
5	(5)	MeLi	(8) (59)
6	(6)	MeLi	(9) (64)

^a Reactions typically involved stirring the iron tricarbonyl complex (0.5 mmol) and the organolithium or Grignard reagent (0.75 mmol) at -78 °C for 7 h in Et₂O. The reaction mixture was quenched with Bu'Br (5.0 mmol) and allowed to warm to room temperature over 1 h. ^b Products were identified by i.r., n.m.r., and high resolution mass spectra. ^c Yields refer to purified product isolated by column chromatography (SiO₂).

Reaction of (4), (5), and (6) with methyl-lithium resulted in their conversion into the 1,4-diketones (7), (8), and (9) respectively (Table 1, entries 4, 5, and 6).

It has been reported that the metal acyl anions, $[RCONi(CO)_3]^-$ and $[RCOFe(CO)_3]^-$, react in an intermolecular fashion with α,β -unsaturated ketones.^{4,5} The reaction described here probably proceeds through a metal acyl intermediate (10). Acyl transfer to the α,β -unsaturated ketone and protonation presumably occur whilst the α,β unsaturated ketone is attached to the metal atom. The use of iron tricarbonyl complexes for acyl addition to α,β -unsaturated ketones should have wide applicability.

Received, 10th September 1986; Com. 1298

References

- 1 E. Weiss, K. Stark, J. E. Lancaster, and H. D. Murdoch, *Helv. Chim. Acta*, 1963, **46**, 288.
- 2 A. M. Brodie, B. F. G. Johnson, P. L. Josty, and J. Lewis, J. Chem. Soc., Dalton Trans., 1972, 2031.
- 3 A. N. Nesmeyanov, L. V. Rubin, N. T. Gubenko, M. I. Rybinskaya, and P. V. Petrovskii, J. Organomet. Chem., 1974, 71, 271.
- 4 E. J. Corey and L. S. Hegedus, J. Am. Chem. Soc., 1969, 91, 4926.
 5 M. P. Cooke and R. M. Parlman, J. Am. Chem. Soc., 1977, 99, 5222.